Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
Chromosome Res ; 32(2): 8, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717688

RESUMEN

Holocentric species are characterized by the presence of centromeres throughout the length of the chromosomes. We confirmed the holocentricity of the dioecious, small chromosome-size species Myristica fragrans based on the chromosome-wide distribution of the centromere-specific protein KNL1, α-tubulin fibers, and the cell cycle-dependent histone H3 serine 28 phosphorylation (H3S28ph) mark. Each holocentromere is likely composed of, on average, ten centromere units, but none of the identified and in situ hybridized high-copy satellite repeats is centromere-specific. No sex-specific major repeats are present in the high-copy repeat composition of male or female plants, or a significant difference in genome size was detected. Therefore, it is unlikely that M. fragrans possesses heteromorphic sex chromosomes.


Asunto(s)
Centrómero , Cromosomas de las Plantas , ADN Satélite , Myristica , ADN Satélite/genética , Centrómero/genética , Myristica/química , Myristica/genética , Histonas/genética , Tubulina (Proteína)/genética , Hibridación Fluorescente in Situ , Proteínas de Plantas/genética
2.
Sci Rep ; 14(1): 11010, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745019

RESUMEN

The presence of incompatibility alleles in primary amphidiploids constitutes a reproductive barrier in newly synthesized wheat-rye hybrids. To overcome this barrier, the genome stabilization process includes large-scale chromosome rearrangements. In incompatible crosses resulting in fertile amphidiploids, the elimination of one of the incompatible alleles Eml-A1 or Eml-R1b can occur already in the somatic tissue of the wheat × rye hybrid embryo. We observed that the interaction of incompatible loci Eml-A1 of wheat and Eml-R1b of rye after overcoming embryo lethality leads to hybrid sterility in primary triticale. During subsequent seed reproductions (R1, R2 or R3) most of the chromosomes of A, B, D and R subgenomes undergo rearrangement or eliminations to increase the fertility of the amphidiploid by natural selection. Genotyping-by-sequencing (GBS) coverage analysis showed that improved fertility is associated with the elimination of entire and partial chromosomes carrying factors that either cause the disruption of plant development in hybrid plants or lead to the restoration of the euploid number of chromosomes (2n = 56) in the absence of one of the incompatible alleles. Highly fertile offspring obtained in compatible and incompatible crosses can be successfully adapted for the production of triticale pre-breeding stocks.


Asunto(s)
Cromosomas de las Plantas , Cruzamientos Genéticos , Hibridación Genética , Secale , Triticum , Triticum/genética , Secale/genética , Cromosomas de las Plantas/genética , Alelos , Técnicas de Genotipaje
3.
G3 (Bethesda) ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38626314

RESUMEN

Since the discovery of B chromosomes, multiple different definitions of these selfish genetic elements have been put forth. We reconsidered early definitions in light of recently published studies. While there are many characteristics that vary among different B chromosomes, such as their evolutionary origins, size, segregation behaviors, gene content, and function, there is one defining trait of all B chromosomes: they are nonessential for the organism. The points raised here may be useful for framing future B chromosome studies and help guide the categorization of new chromosomal elements that are uncovered in genomic studies.

4.
Bioessays ; : e2400013, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38593286

RESUMEN

In addition to monocentric eukaryotes, which have a single localized centromere on each chromosome, there are holocentric species, with extended repeat-based or repeat-less centromeres distributed over the entire chromosome length. At least two types of repeat-based holocentromeres exist, one composed of many small repeat-based centromere units (small unit-type), and another one characterized by a few large centromere units (large unit-type). We hypothesize that the transposable element-mediated dispersal of hundreds of short satellite arrays formed the small centromere unit-type holocentromere in Rhynchospora pubera. The large centromere unit-type of the plant Chionographis japonica is likely a product of simultaneous DNA double-strand breaks (DSBs), which initiated the de novo formation of repeat-based holocentromeres via insertion of satellite DNA, derived from extra-chromosomal circular DNAs (eccDNAs). The number of initial DSBs along the chromosomes must be higher than the number of centromere units since only a portion of the breaks will have incorporated eccDNA at an appropriate position to serve as future centromere unit sites. Subsequently, preferential incorporation of the centromeric histone H3 variant at these positions is assumed. The identification of repeat-based holocentromeres across lineages will unveil the centromere plasticity and elucidate the mechanisms underlying the diverse formation of holocentromeres.

5.
Plant J ; 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38461471

RESUMEN

Juncus is the largest genus of Juncaceae and was considered holocentric for a long time. Recent findings, however, indicated that 11 species from different clades of the genus have monocentric chromosomes. Thus, the Juncus centromere organization and evolution need to be reassessed. We aimed to investigate the major repetitive DNA sequences of two accessions of Juncus effusus and its centromeric structure by employing whole-genome analyses, fluorescent in situ hybridization, CENH3 immunodetection, and chromatin immunoprecipitation sequencing. We showed that the repetitive fraction of the small J. effusus genome (~270 Mbp/1C) is mainly composed of Class I and Class II transposable elements (TEs) and satellite DNAs. Three identified satellite DNA families were mainly (peri)centromeric, with two being associated with the centromeric protein CENH3, but not strictly centromeric. Two types of centromere organization were discerned in J. effusus: type 1 was characterized by a single CENH3 domain enriched with JefSAT1-155 or JefSAT2-180, whereas type 2 showed multiple CENH3 domains interrupted by other satellites, TEs or genes. Furthermore, while type 1 centromeres showed a higher degree of satellite identity along the array, type 2 centromeres had less homogenized arrays along the multiple CENH3 domains per chromosome. Although the analyses confirmed the monocentric organization of J. effusus chromosomes, our data indicate a more dynamic arrangement of J. effusus centromeres than observed for other plant species, suggesting it may constitute a transient state between mono- and holocentricity.

6.
New Phytol ; 241(2): 541-552, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37984056

RESUMEN

Spontaneous chromosomal rearrangements (CRs) play an essential role in speciation, genome evolution and crop domestication. To be able to use the potential of CRs for breeding, plant chromosome engineering was initiated by fragmenting chromosomes by X-ray irradiation. With the rise of the CRISPR/Cas system, it became possible to induce double-strand breaks (DSBs) in a highly efficient manner at will at any chromosomal position. This has enabled a completely new level of predesigned chromosome engineering. The genetic linkage between specific genes can be broken by inducing chromosomal translocations. Natural inversions, which suppress genetic exchange, can be reverted for breeding. In addition, various approaches for constructing minichromosomes by downsizing regular standard A or supernumerary B chromosomes, which could serve as future vectors in plant biotechnology, have been developed. Recently, a functional synthetic centromere could be constructed. Also, different ways of genome haploidization have been set up, some based on centromere manipulations. In the future, we expect to see even more complex rearrangements, which can be combined with previously developed engineering technologies such as recombinases. Chromosome engineering might help to redefine genetic linkage groups, change the number of chromosomes, stack beneficial genes on mini cargo chromosomes, or set up genetic isolation to avoid outcrossing.


Asunto(s)
Cromosomas de las Plantas , Ingeniería Genética , Cromosomas de las Plantas/genética , Fitomejoramiento , Biotecnología , Centrómero/genética
7.
Ann Bot ; 133(3): 435-446, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38127060

RESUMEN

BACKGROUND AND AIMS: Dogroses (Rosa sect. Caninae) are mostly pentaploid, bearing 2n = 5x = 35 chromosomes in somatic cells. They evolved a unique form of asymmetrical meiosis characterized by two types of chromosomes: (1) chromosomes forming bivalents and distributed in the normal sexual way; and (2) chromosomes occurring as univalents and transferred by a female gamete only. In the mature pollen of pentaploid species, seven bivalent-derived chromosomes are transmitted to offspring, and 21 unpaired univalent chromosomes are eliminated during microsporogenesis. To discriminate between bivalent- and univalent-forming chromosomes, we studied histone H3 phosphorylation patterns regulating meiotic chromosome condensation and segregation. METHODS: We analysed histone modification patterns during male canina meiosis in two representative dogrose species, 5x Rosa canina and 5x Rosa rubiginosa, by immunohistochemical and molecular cytogenetics approaches. Immunostaining of meiotic cells included α-tubulin, histone H3 phosphorylation (H3S10p, H3S28p and H3T3p) and methylation (H3K4me3 and H3K27me3) marks. In addition, fluorescent in situ hybridization was carried out with an 18S rDNA probe. KEY RESULTS: In the first meiotic division, univalent chromosomes underwent equational division into chromatids, while homologues in bivalents were segregated as regular dyads. In diakinesis, bivalent chromosomes displayed strong H3 phosphorylation signals in proximal regions, spreading to the rest of the chromosome. In contrast, in univalents, the H3 phosphorylation signals were weaker, occurring mostly outside proximal regions largely overlapping with the H3K4me3 signals. Reduced phosphorylation was associated with relative under-condensation of the univalent chromosomes, particularly at early diakinesis. CONCLUSIONS: We hypothesize that the absence of pairing and/or recombination in univalent chromosomes negatively affects the histone H3 phosphorylation of their chromatin and perhaps the loading of meiotic-specific cohesins. This apparently destabilizes cohesion of sister chromatids, leading to their premature split in the first meiotic division.


Asunto(s)
Histonas , Meiosis , Histonas/genética , Fosforilación , Hibridación Fluorescente in Situ , Cromosomas , Epigénesis Genética
8.
Chromosome Res ; 31(3): 26, 2023 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-37658970

RESUMEN

In many species, the transmission of B chromosomes (Bs) does not follow the Mendelian laws of equal segregation and independent assortment. This deviation results in transmission rates of Bs higher than 0.5, a process known as "chromosome drive". Here, we studied the behavior of the 103 Mbp-large B chromosome of Festuca pratensis during all meiotic and mitotic stages of microsporogenesis. Mostly, the B chromosome of F. pratensis segregates during meiosis like standard A chromosomes (As). In some cases, the B passes through meiosis in a non-Mendelian segregation leading to their accumulation already in meiosis. However, a true drive of the B happens during the first pollen mitosis, by which the B preferentially migrates to the generative nucleus. During second pollen mitosis, B divides equally between the two sperms. Despite some differences in the frequency of drive between individuals with different numbers of Bs, at least 82% of drive was observed. Flow cytometry-based quantification of B-containing sperm nuclei agrees with the FISH data.


Asunto(s)
Festuca , Semillas , Núcleo Celular , Meiosis , Cromosomas
9.
Plants (Basel) ; 12(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37299136

RESUMEN

Angiosperm genome sizes (GS) range ~2400-fold and comprise genes and their regulatory regions, repeats, semi-degraded repeats, and 'dark matter'. The latter represents repeats so degraded that they can no longer be recognised as repetitive. In exploring whether the histone modifications associated with chromatin packaging of these contrasting genomic components are conserved across the diversity of GS in angiosperms, we compared immunocytochemistry data for two species whose GS differ ~286-fold. We compared published data for Arabidopsis thaliana with a small genome (GS = 157 Mbp/1C) with newly generated data from Fritillaria imperialis, which has a giant genome (GS = 45,000 Mbp/1C). We compared the distributions of the following histone marks: H3K4me1, H3K4me2, H3K9me1, H3K9me2, H3K9me3, H3K27me1, H3K27me2, and H3K27me3. Assuming these histone marks are associated with the same genomic features across all species, irrespective of GS, our comparative analysis enables us to suggest that while H3K4me1 and H3K4me2 methylation identifies genic DNA, H3K9me3 and H3K27me3 marks are associated with 'dark matter', H3K9me1 and H3K27me1 mark highly homogeneous repeats, and H3K9me2 and H3K27me2 mark semi-degraded repeats. The results have implications for our understanding of epigenetic profiles, chromatin packaging and the divergence of genomes, and highlight contrasting organizations of the chromatin within the nucleus depending on GS itself.

10.
J Appl Crystallogr ; 56(Pt 3): 633-642, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37284252

RESUMEN

The high-intensity time-of-flight (TOF) neutron diffractometer POWTEX for powder and texture analysis is currently being built prior to operation in the eastern guide hall of the research reactor FRM II at Garching close to Munich, Germany. Because of the world-wide 3He crisis in 2009, the authors promptly initiated the development of 3He-free detector alternatives that are tailor-made for the requirements of large-area diffractometers. Herein is reported the 2017 enterprise to operate one mounting unit of the final POWTEX detector on the neutron powder diffractometer POWGEN at the Spallation Neutron Source located at Oak Ridge National Laboratory, USA. As a result, presented here are the first angular- and wavelength-dependent data from the POWTEX detector, unfortunately damaged by a 50g shock but still operating, as well as the efforts made both to characterize the transport damage and to successfully recalibrate the voxel positions in order to yield nonetheless reliable measurements. Also described is the current data reduction process using the PowderReduceP2D algorithm implemented in Mantid [Arnold et al. (2014). Nucl. Instrum. Methods Phys. Res. A, 764, 156-166]. The final part of the data treatment chain, namely a novel multi-dimensional refinement using a modified version of the GSAS-II software suite [Toby & Von Dreele (2013). J. Appl. Cryst.46, 544-549], is compared with a standard data treatment of the same event data conventionally reduced as TOF diffraction patterns and refined with the unmodified version of GSAS-II. This involves both determining the instrumental resolution parameters using POWGEN's powdered diamond standard sample and the refinement of a friendly-user sample, BaZn(NCN)2. Although each structural parameter on its own looks similar upon comparing the conventional (1D) and multi-dimensional (2D) treatments, also in terms of precision, a closer view shows small but possibly significant differences. For example, the somewhat suspicious proximity of the a and b lattice parameters of BaZn(NCN)2 crystallizing in Pbca as resulting from the 1D refinement (0.008 Å) is five times less pronounced in the 2D refinement (0.038 Å). Similar features are found when comparing bond lengths and bond angles, e.g. the two N-C-N units are less differently bent in the 1D results (173 and 175°) than in the 2D results (167 and 173°). The results are of importance not only for POWTEX but also for other neutron TOF diffractometers with large-area detectors, like POWGEN at the SNS or the future DREAM beamline at the European Spallation Source.

11.
Methods Mol Biol ; 2672: 315-335, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37335486

RESUMEN

Fluorescence in situ hybridization (FISH) has been widely used to visualize target DNA sequences in fixed chromosome samples by denaturing the dsDNA to allow complementary probe hybridization, thus damaging the chromatin structure by harsh treatments. To overcome this limitation, a CRISPR/Cas9-based in situ labeling method was developed, termed CRISPR-FISH. This method is also known as RNA-guided endonuclease-in situ labeling (RGEN-ISL). Here we present different protocols for the application of CRISPR-FISH on acetic acid: ethanol or formaldehyde-fixed nuclei and chromosomes as well as tissue sections for labeling repetitive sequences in a range of plant species. In addition, methods on how immunostaining can be combined with CRISPR-FISH are provided.


Asunto(s)
Sistemas CRISPR-Cas , Cromosomas , Hibridación Fluorescente in Situ/métodos , Sistemas CRISPR-Cas/genética , ADN , Secuencias Repetitivas de Ácidos Nucleicos
12.
Nat Commun ; 14(1): 3502, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37311740

RESUMEN

The centromere is the chromosome region where microtubules attach during cell division. In contrast to monocentric chromosomes with one centromere, holocentric species usually distribute hundreds of centromere units along the entire chromatid. We assembled the chromosome-scale reference genome and analyzed the holocentromere and (epi)genome organization of the lilioid Chionographis japonica. Remarkably, each of its holocentric chromatids consists of only 7 to 11 evenly spaced megabase-sized centromere-specific histone H3-positive units. These units contain satellite arrays of 23 and 28 bp-long monomers capable of forming palindromic structures. Like monocentric species, C. japonica forms clustered centromeres in chromocenters at interphase. In addition, the large-scale eu- and heterochromatin arrangement differs between C. japonica and other known holocentric species. Finally, using polymer simulations, we model the formation of prometaphase line-like holocentromeres from interphase centromere clusters. Our findings broaden the knowledge about centromere diversity, showing that holocentricity is not restricted to species with numerous and small centromere units.


Asunto(s)
Proteínas de Ciclo Celular , Centrómero , Centrómero/genética , División Celular , Cromátides , Heterocromatina/genética
13.
Proc Natl Acad Sci U S A ; 120(21): e2300877120, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37192159

RESUMEN

The segregation of chromosomes depends on the centromere. Most species are monocentric, with the centromere restricted to a single region per chromosome. In some organisms, the monocentric organization changed to holocentric, in which the centromere activity is distributed over the entire chromosome length. However, the causes and consequences of this transition are poorly understood. Here, we show that the transition in the genus Cuscuta was associated with dramatic changes in the kinetochore, a protein complex that mediates the attachment of chromosomes to microtubules. We found that in holocentric Cuscuta species, the KNL2 genes were lost; the CENP-C, KNL1, and ZWINT1 genes were truncated; the centromeric localization of CENH3, CENP-C, KNL1, MIS12, and NDC80 proteins was disrupted; and the spindle assembly checkpoint (SAC) degenerated. Our results demonstrate that holocentric Cuscuta species lost the ability to form a standard kinetochore and do not employ SAC to control the attachment of microtubules to chromosomes.


Asunto(s)
Cuscuta , Cinetocoros , Centrómero/genética , Estructuras Cromosómicas , Microtúbulos/metabolismo , Segregación Cromosómica
14.
Nucleic Acids Res ; 51(6): 2641-2654, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36864547

RESUMEN

Chromatids of mitotic chromosomes were suggested to coil into a helix in early cytological studies and this assumption was recently supported by chromosome conformation capture (3C) sequencing. Still, direct differential visualization of a condensed chromatin fibre confirming the helical model was lacking. Here, we combined Hi-C analysis of purified metaphase chromosomes, biopolymer modelling and spatial structured illumination microscopy of large fluorescently labeled chromosome segments to reveal the chromonema - a helically-wound, 400 nm thick chromatin thread forming barley mitotic chromatids. Chromatin from adjacent turns of the helix intermingles due to the stochastic positioning of chromatin loops inside the chromonema. Helical turn size varies along chromosome length, correlating with chromatin density. Constraints on the observable dimensions of sister chromatid exchanges further supports the helical chromonema model.


Asunto(s)
Cromátides , Hordeum , Metafase , Cromátides/química , Cromatina/genética , Cromosomas , Microscopía , Intercambio de Cromátides Hermanas , Cromosomas de las Plantas , Hordeum/citología
15.
Genes (Basel) ; 14(2)2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36833420

RESUMEN

The genus Agave presents a bimodal karyotype with x = 30 (5L, large, +25S, small chromosomes). Bimodality within this genus is generally attributed to allopolyploidy in the ancestral form of Agavoideae. However, alternative mechanisms, such as the preferential accumulation of repetitive elements at the macrochromosomes, could also be important. Aiming to understand the role of repetitive DNA within the bimodal karyotype of Agave, genomic DNA from the commercial hybrid 11648 (2n = 2x = 60, 6.31 Gbp) was sequenced at low coverage, and the repetitive fraction was characterized. In silico analysis showed that ~67.6% of the genome is mainly composed of different LTR retrotransposon lineages and one satellite DNA family (AgSAT171). The satellite DNA localized at the centromeric regions of all chromosomes; however, stronger signals were observed for 20 of the macro- and microchromosomes. All transposable elements showed a dispersed distribution, but not uniform across the length of the chromosomes. Different distribution patterns were observed for different TE lineages, with larger accumulation at the macrochromosomes. The data indicate the differential accumulation of LTR retrotransposon lineages at the macrochromosomes, probably contributing to the bimodality. Nevertheless, the differential accumulation of the satDNA in one group of macro- and microchromosomes possibly reflects the hybrid origin of this Agave accession.


Asunto(s)
Agave , ADN Satélite , Agave/genética , Retroelementos , Cariotipo , Centrómero
16.
Chromosoma ; 132(1): 19-29, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36719450

RESUMEN

Topoisomerase IIα (Topo IIα) and the centromere-specific histone H3 variant CENH3 are key proteins involved in chromatin condensation and centromere determination, respectively. Consequently, they are required for proper chromosome segregation during cell divisions. We combined two super-resolution techniques, structured illumination microscopy (SIM) to co-localize Topo IIα and CENH3, and photoactivated localization microscopy (PALM) to determine their molecule numbers in barley metaphase chromosomes. We detected a dispersed Topo IIα distribution along chromosome arms but an accumulation at centromeres, telomeres, and nucleolus-organizing regions. With a precision of 10-50 nm, we counted ~ 20,000-40,000 Topo IIα molecules per chromosome, 28% of them within the (peri)centromere. With similar precision, we identified ~13,500 CENH3 molecules per centromere where Topo IIα proteins and CENH3-containing chromatin intermingle. In short, we demonstrate PALM as a useful method to count and localize single molecules with high precision within chromosomes. The ultrastructural distribution and the detected amount of Topo IIα and CENH3 are instrumental for a better understanding of their functions during chromatin condensation and centromere determination.


Asunto(s)
Hordeum , Hordeum/genética , Metafase , Microscopía , Centrómero , Cromatina/genética
17.
Plant Commun ; 4(3): 100507, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36540022

RESUMEN

Double haploid production is the most effective way to create true-breeding lines in a single generation. In Arabidopsis, haploid induction via mutation of the centromere-specific histone H3 (cenH3) has been shown when the mutant is outcrossed to the wild-type, and the wild-type genome remains in the haploid progeny. However, factors that affect haploid induction are still poorly understood. Here, we report that a mutant of the cenH3 assembly factor Kinetochore Null2 (KNL2) can be used as a haploid inducer when pollinated by the wild-type. We discovered that short-term temperature stress of the knl2 mutant increased the efficiency of haploid induction 10-fold. We also demonstrated that a point mutation in the CENPC-k motif of KNL2 is sufficient to generate haploid-inducing lines, suggesting that haploid-inducing lines in crops can be identified in a naturally occurring or chemically induced mutant population, avoiding the generic modification (GM) approach at any stage. Furthermore, a cenh3-4 mutant functioned as a haploid inducer in response to short-term heat stress, even though it did not induce haploids under standard conditions. Thus, we identified KNL2 as a new target gene for the generation of haploid-inducer lines and showed that exposure of centromeric protein mutants to high temperature strongly increases their haploid induction efficiency.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Haploidia , Temperatura , Centrómero/genética , Cinetocoros
18.
Nat Plants ; 8(10): 1153-1159, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36109610

RESUMEN

Recent studies have demonstrated that not only genes but also entire chromosomes can be engineered using clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPER-associated protein 9 (Cas9)1-5. A major objective of applying chromosome restructuring in plant breeding is the manipulation of genetic exchange6. Here we show that meiotic recombination can be suppressed in nearly the entire chromosome using chromosome restructuring. We were able to induce a heritable inversion of a >17 Mb-long chromosome fragment that contained the centromere and covered most of chromosome 2 of the Arabidopsis ecotype Col-0. Only the 2 and 0.5 Mb-long telomeric ends remained in their original orientation. In single-nucleotide polymorphism marker analysis of the offspring of crosses with the ecotype Ler-1, we detected a massive reduction of crossovers within the inverted chromosome region, coupled with a shift of crossovers to the telomeric ends. The few genetic exchanges detected within the inversion all originated from double crossovers. This not only indicates that heritable genetic exchange can occur by interstitial chromosome pairing, but also that it is restricted to the production of viable progeny.


Asunto(s)
Arabidopsis , Cromosomas de las Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Cromosomas de las Plantas/genética , Sistemas CRISPR-Cas , Fitomejoramiento
19.
J Exp Bot ; 73(22): 7243-7254, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36067007

RESUMEN

The generation of haploid plants accelerates the crop breeding process. One of the haploidization strategies is based on the genetic manipulation of endogenous centromere-specific histone 3 (CENH3). To extend the haploidization toolbox, we tested whether targeted in vivo degradation of CENH3 protein can be harnessed to generate haploids in Arabidopsis thaliana. We show that a recombinant anti-GFP nanobody fused to either heterologous F-box (NSlmb) or SPOP/BTB ligase proteins can recognize maternally derived enhanced yellow fluorescent protein (EYFP)-tagged CENH3 in planta and make it accessible for the ubiquitin-proteasome pathway. Outcrossing of the genomic CENH3-EYFP-complemented cenh3.1 mother with plants expressing the GFP-nanobody-targeted E3 ubiquitin ligase resulted in a haploid frequency of up to 7.6% in pooled F1 seeds. EYFP-CENH3 degradation occurred independently in embryo and endosperm cells. In reciprocal crosses, no haploid induction occurred. We propose that the uniparental degradation of EYFP-fused genomic CENH3 during early embryogenesis leads to a decrease in its level at centromeres and subsequently weakens the centromeres. The male-derived wild type CENH3 containing centromere outcompetes the CENH3-EYFP depleted centromere. Consequently, maternal chromosomes undergo elimination, resulting in haploids.


Asunto(s)
Arabidopsis , Ubiquitina , Arabidopsis/genética , Complejo de la Endopetidasa Proteasomal , Genómica
20.
Cell ; 185(17): 3153-3168.e18, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35926507

RESUMEN

The centromere represents a single region in most eukaryotic chromosomes. However, several plant and animal lineages assemble holocentromeres along the entire chromosome length. Here, we compare genome organization and evolution as a function of centromere type by assembling chromosome-scale holocentric genomes with repeat-based holocentromeres from three beak-sedge (Rhynchospora pubera, R. breviuscula, and R. tenuis) and their closest monocentric relative, Juncus effusus. We demonstrate that transition to holocentricity affected 3D genome architecture by redefining genomic compartments, while distributing centromere function to thousands of repeat-based centromere units genome-wide. We uncover a complex genome organization in R. pubera that hides its unexpected octoploidy and describe a marked reduction in chromosome number for R. tenuis, which has only two chromosomes. We show that chromosome fusions, facilitated by repeat-based holocentromeres, promoted karyotype evolution and diploidization. Our study thus sheds light on several important aspects of genome architecture and evolution influenced by centromere organization.


Asunto(s)
Centrómero , Cyperaceae , Animales , Centrómero/genética , Cyperaceae/genética , Evolución Molecular , Cariotipo , Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA